Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Microbes Infect ; : 105150, 2023 May 11.
Artículo en Inglés | MEDLINE | ID: covidwho-2315955

RESUMEN

Viral infection treatment is a difficult task due to its complex structure and metabolism. Additionally, viruses can alter the metabolism of host cells, mutate, and readily adjust to harsh environments. Coronavirus stimulates glycolysis, weakens mitochondrial activity, and impairs infected cells. In this study, we investigated the efficacy of 2-DG in inhibiting coronavirus-induced metabolic processes and antiviral host defense systems, which have not been explored so far. 2-Deoxy-d-glucose (2-DG), a molecule restricting substrate availability, has recently gained attention as a potential antiviral drug. The results revealed that 229E human coronavirus promoted glycolysis, producing a significant increase in the concentration of fluorescent 2-NBDG, a glucose analog, particularly in the infected host cells. The addition of 2-DG decreased its viral replication and suppressed infection-induced cell death and cytopathic effects, thereby improving the antiviral host defense response. It was also observed that administration of low doses of 2-DG inhibited glucose uptake, indicating that 2-DG consumption in virus-infected host cells was mediated by high-affinity glucose transporters, whose levels were amplified upon coronavirus infection. Our findings indicated that 2-DG could be a potential drug to improve the host defense system in coronavirus-infected cells.

2.
Materials Today ; 2023.
Artículo en Inglés | ScienceDirect | ID: covidwho-2311784

RESUMEN

Immunization has the potential to become a viable weapon for the upcoming pandemic and save millions of lives, while also dramatically lowering the high mortality rate brought on by a number of infectious and chronic illnesses. Despite the success of some vaccinations for infectious illnesses, obstacles remain in avoiding and creating fully protective vaccines. Current COVID-19 pandemic highlights need for vaccination platform improvements. Nanomaterials have been created as a possible nanocarrier to elicit a robust immune response against important global morbidity and mortality drivers by encapsulating targeted antigen and functionalizing nanoparticles with particular molecules. In addition to their application in cancer immunotherapy, nanocarriers are currently being included into the development of vaccines against human immunodeficiency virus (HIV), malaria, TB, and influenza. In order to evaluate conventional and next-generation vaccination platforms, this study focuses on the COVID-19 and cancer vaccine as well as the passage and interaction of nanoparticles with immune cells in the lymph node. It also draws attention to the gaps in current and future HIV, TB, malaria, and influenza vaccinations, as well as nanovaccines. The importance of the dose-dependent vaccine in inducing and maintaining neutralizing antibodies after immunization has been discussed in more detail.

3.
Sci Total Environ ; 872: 162197, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: covidwho-2234225

RESUMEN

Emerging bio-contaminants such as viruses have affected health and environment settings of every country. Viruses are the minuscule entities resulting in severe contagious diseases like SARS, MERS, Ebola, and avian influenza. Recent epidemic like the SARS-CoV-2, the virus has undergone mutations strengthen them and allowing to escape from the remedies. Comprehensive knowledge of viruses is essential for the development of targeted therapeutic and vaccination treatments. Animal models mimicking human biology like non-human primates, rats, mice, and rabbits offer competitive advantage to assess risk of viral infections, chemical toxins, nanoparticles, and microbes. However, their economic maintenance has always been an issue. Furthermore, the redundancy of experimental results due to aforementioned aspects is also in examine. Hence, exploration for the alternative animal models is crucial for risk assessments. The current review examines zebrafish traits and explores the possibilities to monitor emerging bio-contaminants. Additionally, a comprehensive picture of the bio contaminant and virus particle invasion and abatement mechanisms in zebrafish and human cells is presented. Moreover, a zebrafish model to investigate the emerging viruses such as coronaviridae and poxviridae has been suggested.


Asunto(s)
COVID-19 , Gripe Aviar , Virus , Humanos , Animales , Ratones , Ratas , Conejos , Pez Cebra , Inactivación de Virus , SARS-CoV-2
4.
J Nanobiotechnology ; 20(1): 393, 2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: covidwho-2009412

RESUMEN

High-quality point-of-care is critical for timely decision of disease diagnosis and healthcare management. In this regard, biosensors have revolutionized the field of rapid testing and screening, however, are confounded by several technical challenges including material cost, half-life, stability, site-specific targeting, analytes specificity, and detection sensitivity that affect the overall diagnostic potential and therapeutic profile. Despite their advances in point-of-care testing, very few classical biosensors have proven effective and commercially viable in situations of healthcare emergency including the recent COVID-19 pandemic. To overcome these challenges functionalized magnetic nanoparticles (MNPs) have emerged as key players in advancing the biomedical and healthcare sector with promising applications during the ongoing healthcare crises. This critical review focus on understanding recent developments in theranostic applications of functionalized magnetic nanoparticles (MNPs). Given the profound global economic and health burden, we discuss the therapeutic impact of functionalized MNPs in acute and chronic diseases like small RNA therapeutics, vascular diseases, neurological disorders, and cancer, as well as for COVID-19 testing. Lastly, we culminate with a futuristic perspective on the scope of this field and provide an insight into the emerging opportunities whose impact is anticipated to disrupt the healthcare industry.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19 , Nanopartículas de Magnetita , Nanopartículas , COVID-19/diagnóstico , Prueba de COVID-19 , Enfermedad Crónica , Humanos , Nanopartículas de Magnetita/uso terapéutico , Nanomedicina , Pandemias
5.
Sci Adv ; 6(28): eabb8097, 2020 07.
Artículo en Inglés | MEDLINE | ID: covidwho-1388430

RESUMEN

The prevalence of respiratory illness caused by the novel SARS-CoV-2 virus associated with multiple organ failures is spreading rapidly because of its contagious human-to-human transmission and inadequate globalhealth care systems. Pharmaceutical repurposing, an effective drug development technique using existing drugs, could shorten development time and reduce costs compared to those of de novo drug discovery. We carried out virtual screening of antiviral compounds targeting the spike glycoprotein (S), main protease (Mpro), and the SARS-CoV-2 receptor binding domain (RBD)-angiotensin-converting enzyme 2 (ACE2) complex of SARS-CoV-2. PC786, an antiviral polymerase inhibitor, showed enhanced binding affinity to all the targets. Furthermore, the postfusion conformation of the trimeric S protein RBD with ACE2 revealed conformational changes associated with PC786 drug binding. Exploiting immunoinformatics to identify T cell and B cell epitopes could guide future experimental studies with a higher probability of discovering appropriate vaccine candidates with fewer experiments and higher reliability.


Asunto(s)
Antivirales/farmacología , Betacoronavirus/inmunología , Infecciones por Coronavirus/prevención & control , Cisteína Endopeptidasas/química , Diseño de Fármacos , Pandemias/prevención & control , Peptidil-Dipeptidasa A/química , Neumonía Viral/prevención & control , Glicoproteína de la Espiga del Coronavirus/química , Proteínas no Estructurales Virales/química , Enzima Convertidora de Angiotensina 2 , Benzamidas , Benzazepinas , Betacoronavirus/efectos de los fármacos , Betacoronavirus/metabolismo , Sitios de Unión , COVID-19 , Proteasas 3C de Coronavirus , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Cisteína Endopeptidasas/inmunología , Cisteína Endopeptidasas/metabolismo , Evaluación Preclínica de Medicamentos , Epítopos de Linfocito B/efectos de los fármacos , Epítopos de Linfocito B/inmunología , Epítopos de Linfocito T/efectos de los fármacos , Epítopos de Linfocito T/inmunología , Humanos , Simulación del Acoplamiento Molecular , Peptidil-Dipeptidasa A/inmunología , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral/inmunología , Neumonía Viral/virología , Unión Proteica , Conformación Proteica , Dominios Proteicos , Dominios y Motivos de Interacción de Proteínas , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Compuestos de Espiro/farmacología , Proteínas no Estructurales Virales/inmunología , Proteínas no Estructurales Virales/metabolismo
6.
Science Advances ; 6(28):1-14, 2020.
Artículo | Academic Search Complete | ID: covidwho-657570

RESUMEN

The article offers information about the structure-based drug designing and immunoinformatics approach for SARS-CoV-2. It discusses the prevalence of respiratory illness caused by the novel SARS-CoV-2 virus associated with multiple organ failures is spreading rapidly because of its contagious human-to-human transmission and inadequate global health care systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA